Package: dirichletprocess 0.4.2
dirichletprocess: Build Dirichlet Process Objects for Bayesian Modelling
Perform nonparametric Bayesian analysis using Dirichlet processes without the need to program the inference algorithms. Utilise included pre-built models or specify custom models and allow the 'dirichletprocess' package to handle the Markov chain Monte Carlo sampling. Our Dirichlet process objects can act as building blocks for a variety of statistical models including and not limited to: density estimation, clustering and prior distributions in hierarchical models. See Teh, Y. W. (2011) <https://www.stats.ox.ac.uk/~teh/research/npbayes/Teh2010a.pdf>, among many other sources.
Authors:
dirichletprocess_0.4.2.tar.gz
dirichletprocess_0.4.2.zip(r-4.5)dirichletprocess_0.4.2.zip(r-4.4)dirichletprocess_0.4.2.zip(r-4.3)
dirichletprocess_0.4.2.tgz(r-4.4-any)dirichletprocess_0.4.2.tgz(r-4.3-any)
dirichletprocess_0.4.2.tar.gz(r-4.5-noble)dirichletprocess_0.4.2.tar.gz(r-4.4-noble)
dirichletprocess_0.4.2.tgz(r-4.4-emscripten)dirichletprocess_0.4.2.tgz(r-4.3-emscripten)
dirichletprocess.pdf |dirichletprocess.html✨
dirichletprocess/json (API)
NEWS
# Install 'dirichletprocess' in R: |
install.packages('dirichletprocess', repos = c('https://dm13450.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/dm13450/dirichletprocess/issues
- rats - Tumour incidences in rats
bayesianbayesian-inferencebayesian-statisticsdirichlet-processmcmc
Last updated 1 years agofrom:e161437e3d. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 17 2024 |
R-4.5-win | OK | Nov 17 2024 |
R-4.5-linux | OK | Nov 17 2024 |
R-4.4-win | OK | Nov 17 2024 |
R-4.4-mac | OK | Nov 17 2024 |
R-4.3-win | OK | Nov 17 2024 |
R-4.3-mac | OK | Nov 17 2024 |
Exports:AlphaPriorPosteriorPlotAlphaTraceplotBetaMixture2CreateBetaMixtureCreateBurnChangeObservationsClusterComponentUpdateClusterLabelPredictClusterParameterUpdateClusterTraceplotDiagnosticPlotsDirichletHMMCreateDirichletProcessBetaDirichletProcessBeta2DirichletProcessCreateDirichletProcessExponentialDirichletProcessGaussianDirichletProcessGaussianFixedVarianceDirichletProcessHierarchicalBetaDirichletProcessHierarchicalMvnormal2DirichletProcessMvnormalDirichletProcessMvnormal2DirichletProcessWeibullExponentialMixtureCreateFitGaussianFixedVarianceMixtureCreateGaussianMixtureCreateGlobalParameterUpdateHierarchicalBetaCreateHierarchicalMvnormal2CreateInitialiseLikelihoodLikelihoodDPLikelihoodFunctionLikelihoodTraceplotMixingDistributionMvnormal2CreateMvnormalCreatePenalisedLikelihoodpiDirichletplot_dirichletprocess_multivariateplot_dirichletprocess_univariatePosteriorClustersPosteriorDrawPosteriorFramePosteriorFunctionPosteriorParametersPredictivePriorClustersPriorDensityPriorDrawPriorParametersUpdateStickBreakingtrue_cluster_labelsUpdateAlphaUpdateAlphaBetaWeibullMixtureCreateweighted_function_generator
Dependencies:clicolorspacefansifarverggplot2gluegtablegtoolsisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellmvtnormnlmepillarpkgconfigR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr